Paper III: Operations Research

Section-A

 $1 \times 10 = 10/0.5 \times 10 = 5$

- 1. Linear programming is:
- (a) A constrained optimization model
- (b) A mathematical programming
- (c) A constrained decision making model
- (d) All of the above.
- 2. Any solution to GLPP which also satisfies the non-negative restrictions of the problem is called:
 - (a) basic solution

- (b) optimum solution
- (c) feasible solution
- (d) none of the above.
- 3. In a transportation problem the opportunity cost (d_{ij}) for unoccupied cells is obtained by:
 - (a) $C_{ij} (u_L + v_j)$

(b) $-(U_L - V_j) - C_{ij}$

(c) $C_{ij} + (u_L + v_j)$

(d) None of the above.

UPadda.com

- 4. In network analysis, CPM is:
- (a) Event Oriented

- (b) Activity oriented
- (c) probabilistic in Nature
- (d) All of these.
- 5. The time gap between placing an order and its actual arrival in the inventory is known as:
 - (a) Slack Time (b) Lead Time
- (c) Surplus Time (d) None of these.
- 6. If a customer decides not to enter the queue because of its length, he is said to have:
 - (a) Reneged
- (b) Balked
- (c) Jokeyed
- (d) None of these.
- 7. Decision variables in an operation research model are:
- (a) Controllable (b) Uncontrollable (c) Parameters
- (d) Constants.
- 8. Which of the followiking O.R. problems can not be expressed as a network flow problem?
 - (a) an assignment problem
- (b) a transportation problem
- (c) a replacement problem
- (d) a queuing problem.
- 9. The problem of replacement is not concerned about the:
- (a) items that deteriorate graphically
- (b) items that fail suddenly
- (c) determination of optimum replacement interval
- (d) maintenance of an item to work out profitability.
- 10. The Bellman's principle of optimality is used in:
- (a) Goal programming
- (b) Dynamic programming

(c) Game theory

UPadda.com

(d) None of these.

Section—B

 $2 \times 5 = 10/1 \times 5 = 5$

- 1. Explain the graphical method for solving the LPP problem.
- 2. Obtain an initial basic feasible solution to the following transportation problem using the North-West corner rule:

	D	E	F	G	Available
Α	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
Requirement	200	225	275	250	

3. Solve the sequencing problem and find the total elapsed time 2-jobs and 5-machines: Machines

Job-1	Sequence &	Α	В	С	D	E
	Time (hrs)	2	3	4	6	2
Job-2	Sequence &	C	Α	D	E	В
	Time (hrs)	4	5	3	2	6

- 4. Explain the principal assumptions made while dealing with sequencing problems.
- 5. Show that assignment problem is a particular case of transportation problem.

- 6. Specify the characteristics of M | M | 1 queue model.
- 7. Discuss the importance of inventory models.
- 8. Write a note on duality in a linear programming problem.
- 9. Write different steps to solve an Assignment problem by Hungarian method.
 - 10. Define the following terms in Network analysis:
 - (a) Critical Path, (b) Total Float.

$$10 \times 3 = 30/5 \times 3 = 15$$

∪Padda.com

1. Use simplex method to solve the following L.P.P.:

Maximize
$$Z = 4x_1 + 10x_2$$

Subject to $2x_1 + x_2 \le 50$
 $2x_1 + 5x_2 \le 100$
 $2x_1 + 3x_2 \le 90$; $x_1 \ge 0$, $x_2 \ge 0$.

2. A company has factories at F_1 , F_2 and F_3 which supply warehouses at W_1 , W_2 and W_3 . Weekly factory capacities are 200, 160 and 90 units respectively. Weekly warehouses requirements are 180, 120 and 150 units respectively. Unit shipping costs (in rupees) are as follows:

Factory				
	$\mathbf{W_1}$	\mathbf{W}_{2}	W_3	Supply
$\mathbf{F_1}$	16	20	12	200
F_2	. 14	8	18	160
E,	26	24	16	90
Demand	180	120	150	450

Determine the optimum distribution for this company to minimize shipping costs.

3. What is critical path? A certain project is composed of activities whose time estimates are given below:

Draw the project network and find out the critical path.

- 4. (a) What is Degeneracy in transportation problems? How it is eliminated?
- (b) Show that in an assignment problem, if we multiply each element of the effective new matrix by same fixed costant, then the optimum solution remains unchanged.
 - 5. (a) Discuss different types of replacement problem.
- (b) The cost of a machine is raised 6100 and its scraped value is only raise 100 the maintenance cost are found from experience to be are as: