Paper IV (b): Linear Programming

M.M. B.Sc.: 50 / B.A.: 25

	Section—A	B.Sc. : $1 \times 10 = 10$ B.A. : $0.5 \times 10 = 5$					
1. If there is no feasible	1. If there is no feasible region in a L.P.P. then we say problem has:						
(a) Infinite solution	(b) No solution						
(c) Unbounded solution	(d) None of thes	e.					
2. The maximum number of Basic Solutions to a set of m simultaneous equations in a n unknown where $n \ge m$ is:							
(a) m (b) $n - m$	(c) $^{n}c_{m}$	(d) n.					
3. Which of the following	g set in E2 is not convex s	set?					
(a) $[(x_1, x_2) : x_1^2 + x_2^2 \le$	1] (b) $\{(x_1, x_2) : x_1^2\}$	$+x_2^2 \le 4$					
(c) $[(x_1, x_2) : x_1^2 + x_2^2 \ge 1]$	1 and $x_1^2 + x_2^2 \le 4$]						
(d) $[(x_1, x_2) : x_1 \ge 0]$.							
4. A slack variable is int	roduced if the given const	raint :					
(a) ≥ (b) ≤	(c) =	(d) None of these.					
5. By the addition of a n the optimal solution:	ew variable with non-zero	cost to the problem,					
(a) Change	(b) May Change	-					
(c) Does not change	(d) None of thes	e.					
6. If one or more of the is called:	Basic Variable in B.F.S.	is zero, then solution					
(a) Degenerate	(b) Non-degener	rate					
(c) Optimal	(d) None of thes	(d) None of these.					
	of primal is positive ther	the Kth variable of					
the dual is:							
$(a) + ve \qquad (b) - ve$, ,						
8. If standard primal for constraints involves the sign:	m of the problem is of N	Maximization, all the					
$(a) \ge \qquad \qquad (b) \le$	(c) =	(d) None of these.					
9. An assignment proble problem in which :	m is a special case of an	$m \times n$ transportation					
(a) $m = n$ (b) $m = 2n$	(c) 2m = n	(d) $m \neq n$.					
10. To improve the B.F.S we allocate to the cell for which	S. in transportation proble $ch d < j$ is:	m if it is not optimal					
(a) Most negative minimu	ım (b) Maximum po	sitive					
(c) Zero	(d) None of these	e.					

UPadda.com

Section-B

B.Sc. : $2 \times 5 = 10$

B.A. : $1 \times 5 = 5$

∪Padda.com

1. Convert the following L.P.P. into standard form and also in Matrix form:

Minimum
$$Z = 12x_1 + 5x_2$$

Subject to $5x_1 + 3x_2 \ge 15$
 $7x_1 - 2x_2 \le 14$

and

$$x_1 \ge 0, x_2 \ge 0$$

2. Find all the basic solutions of the following equation:

$$x_1 + 2x_2 + x_3 = 4$$
$$2x_1 + x_2 + 5x_3 = 5$$

- 3. Show that hyper plane is a convex set.
- 4. What is degeneracy in L.P.P.? What are the conditions for the occurrence of degeneracy in a LP.P.?
 - 5. Solve the following L.P.P.:

Maximum
$$Z = 2x_1 + 3x_2 + 10x_3$$

Subject to $x_1 - 2x_3 = 0$
 $x_2 + x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

6. Find the dual of the following L.P.P.:

Minimum
$$Z = 10x_1 \div 20x_2$$
Subject to
$$3x_1 + 2x_2 \ge 18$$

$$x_1 + 3x_2 \ge 8$$

$$2x_1 - x_2 \le 6$$

$$x_1, x_2 \ge 0$$

7. Determine an initial B.F.S. of the following transportation problem using lowest cost entry method:

IJ	y mounds.							
		P_1	P ₂	P ₃ _	P ₄		_Required	
•	M_1	19	14	23	11-	11	_↓	
•	M ₂	15	16	12	21	13	_	
•	M_3	30	25	16	39	19		
•	\rightarrow	6	10	12	15			

Available

8. Solve following assignment problem:

-6	I	П	Ш	IV
Α	8	26	17	11
В	13	28	4	26
С	38	19	18	15
D	19	26	24	10

UPadda.com

9. Find all the Basic feasible solution for equation :

$$2x_1 + 6x_2 + 2x_3 + x_4 = 3$$

$$6x_1 + 4x_2 + 4x_5 + 6x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

10. Solve the following L.P.P. by Gomory technique:

$$Z = 3x_2$$

Subject to constraints

$$3x_1 + 2x_2 \le 7$$

$$x_1 - x_2 \ge -2$$

$$x_1, x_2 \ge 0 \text{ and are integers.}$$

B.Sc. : $10 \times 3 = 30$

B.A. :
$$5 \times 3 = 15$$

∪Padda.com

1. Solve by graphical method the following L.P.P.:

$$Z = 20x_1 + 10x_2$$

Subject to constraints

$$x_1 + 2x_2 \le 40$$

 $3x_1 + x_2 \ge 30$ where $x_1, x_2 \ge 0$
 $4x_1 + 3x_2 \ge 60$

2. Solve by Simplex Method the following L.P.P.:

$$Z = 3x_1 + 5x_2 + 4x_3$$

$$2x_1 + 3x_2 \le 8$$

$$2x_2 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$
, $x_1, x_2, x_3 \ge 0$

3. Solve the following L.P.P. by Revised Simplex Method:

$$Z = x_1 + 2x_2$$

Subject to

$$x_1 + x_2 \le 3$$

$$x_1 + 2x_2 \le 5$$

$$3x_1 + x_2 \ge 6$$
, $x_1, x_2 \ge 0$

4. Use duality to solve the following L.P.P.:

Max.

$$\mathbf{Z} = 2x_1 + x_2$$

Subject to

$$x_1 + 2x_2 \le 10$$

$$x_1 + x_2 \le 6, x_1 - x_2 \le 2$$

$$x_1 - 2x_2 \le 1$$
 and $x_1, x_2 \ge 0$

5. Determine the optimum basic feasible solution to the following transportation problem:

	D_1	D_2	D_3	D_4	$ a_i\downarrow$
Oi	5	3、	6	2	19
O_2	4	7	9	1	37
O ₃	3	4	7	5	34
$b_j \rightarrow$	16	18	31	25	