STATISTICS Paper I: Statistical Inference

Note: Attempt all questions from Section-A (Objective type) and Section-B (Short answer type) and three questions from Section-C (Long/Essay type).

Section—A

 $1 \times 10 = 10$

- 1. For the equality of two menas in case of large samples which test is used?
 - (a) t-test
- (b) F-test
- (c) z-test
- (d) None of these.
- 2. Which one of the following specifies the second type of error in hypothesis testing?
 - (a) Reject H₀ when it is true
- (b) Reject H₀ when it is false
- (c) Do not reject H₀ when it is true (d) Do not reject H₀ when it is false.
- 3. For testing the equality of two variances, the following test is used:
- (a) t-test
- (b) χ²-test
- (c) F-test
- (d) Normal test.

UPadda.com

- 4. For testing independence of two attributes in a $(m \times n)$ contingency table, the degree of freedom of χ^2 is:
 - (a) (m+n-1) (b) (m-1) (n-1) (c) (mn-1) (d) (m-n).
 - 5. An estimator T₁ is more efficient than T₂, if:
 - (a) $var(T_1) = var(T_2)$
- (b) $var(T_1) < var(T_2)$
- (c) $var(T_1) > var(T_2)$
- (d) $var(T_1) = -var(T_2)$.
- 6. A sufficient estimator for θ in the distribution $f(x, \theta) = \frac{1}{A}$, $0 \le x \le \theta$ based on a random sample $X_1, X_2, ..., X_n$ is:
 - (a) \overline{X}

- (b) $\sqrt{\sum X_i^2}$
- (c) min $(X_1, X_2, ..., X_n)$
- (d) max $(X_1, X_2, ..., X_n)$.
- 7. Statistic T is said to be an unbiased estimator of parameter θ if:
- (a) $E(T) = 1/\theta$ (b) $E(T) = \theta^2$
- (c) $E(T) = \theta$
- (d) $E(T^2) = \theta$.
- 8. To obtain the confidence interval for the variance use is made of:
- (a) t-statistic
- (b) χ²-statistic
- (c) F-statistic
- (d) None of these.
- 9. Let T_1 and T_2 be sufficient statistics for θ , then:
- (a) $T_1 \equiv T_2$

- (b) T₁ is the function of T₂
- (c) T_1 is not a function of T_2
- (d) None of these.
- 10. The probability of type I error is not known as:
- (a) size of the critical region
- (b) level of significance
- (c) power of the test
- (d) None of these.

Section—B $2 \times 5 = 10$

1. Explain type I and type II errors.

Or

What do you understand by the Power of the test?

2. State Cramer-Rao inequality.

Or

State Rao Backwell theorem.

3. Obtain the maximum likelihood estimator of β using a random sample of size n = 10 from the population with probability density function given by:

$$f(x, \beta) = \begin{cases} (\beta + 1)x^{\beta} ; 0 < x < 1, \beta > -1 \\ 0 ; \text{ otherwise} \end{cases}$$

For x as 1·3, 4·5, 6·0, 0·93, 0·50, 2·38, 0·30, 2·40, -0.58 and 2·83. Or X_1 , X_2 and X_3 is a random sample of size 3 from a population with mean value μ and variance σ^2 .

 T_1 , T_2 , T_3 are the estimators used to estimate mean value μ , where $T_1 = X_1 + X_2 - X_3$, $T_2 = 2X_1 + 3X_3 - 4X_2$, $T_3 = \frac{1}{3}(\lambda X_1 + X_2 + X_3)$.

- (i) Are T₁ and T₂ unbiased estimators
- (ii) Find the value of λ such that T_3 is unbiased estimator for μ .
- 4. Let X have a pdf of the form:

$$f(x, \theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & \text{if } 0 < x < \infty, \theta > 0 \\ 0 & \text{otherwise} \end{cases}$$

To test $H_0: \theta = 2$ against $H_1: \theta = 1$, use the random sample x_1, x_2 of size 2 and define a critical region:

$$W = \{(x_1, x_2) : 9.5 \le x_1 + x_2\}$$

Find: (i) Power of the test, (ii) Significance level of the test.

Or

UPadda.com

Find an unbiased estimator of $e^{-3\lambda}$ on the basis of only one observation from a Poisson population $P(\lambda)$.

5. Write short note on Neyman-Pearson Lemma.

Or

One observation is drawn from a population with pdf as:

$$f(x, \theta) = \frac{1}{\theta}, 0 < x \le \theta.$$

If the Critical region for testing $H_0: \theta = 1$ against $H_1: \theta = 2$ is $1 \le x \le 1.5$, what is the value of α ?

Section—C
$$10 \times 3 = 30$$

- 1. (a) State and prove Invariance property of consistency.
- (b) A random sample of two elements is drawn with replacement from a population with unknown mean μ . The measures of these units are x_1 and x_2 . The following two estimators are suggested for μ .

(i)
$$t_1 = \frac{x_1 + x_2}{2}$$
 (ii) $t_2 = \frac{3x_1 + 2x_2}{5}$

Are both these estimators unbiased? Which of the two is more efficient?

UPadda.com

- 2. Let P be the probability that a coin will fall Head in a single toss in order to test $H_0: P = \frac{1}{2}$ against $H_1: P = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type I error and Power of the test.
 - 3. State and prove Neyman-Pearson's Lemma.
 - 4. State and prove Cramer-Rao Inequality with its regularity aditions.
 - 5. Write short notes on any two of the following:

UPadda.com

(a) Interval estimation, (b) Application of χ^2 -test, (c) Large sample test, (d) Uniformly most powerful test.